Quick Reference#
Creating Dask clusters#
Create a Dask cluster with 6 workers (Learn more) |
import coiled
cluster = coiled.Cluster(n_workers=6)
|
Create a Dask cluster with a custom software environment (Learn more) |
import coiled
cluster = coiled.Cluster(software="my-pip-env")
|
Create a Dask cluster with 1 GPU per worker (Learn more) |
import coiled
cluster = coiled.Cluster(worker_gpu=1)
|
Create a Dask cluster in a Team account (Learn more) |
import coiled
cluster = coiled.Cluster(account="my-team-account-name")
|
Working with Dask clusters#
Connect to a cluster (Learn more) |
from dask.distributed import Client
client = Client(cluster)
print('Dashboard:', client.dashboard_link)
|
Once connected, run a Dask computation as usual (Learn more) |
import dask.dataframe as dd
df = dd.read_csv(...).persist()
df.groupby(...).tip_amount.mean().compute()
|
Scale the number of workers (Learn more) |
cluster.scale(15)
|
Reuse an existing cluster (Learn more) |
cluster = coiled.Cluster(name="existing-cluster-name")
|
Generate a performance report (Learn more) |
from coiled import performance_report
with performance_report(filename="dask-report.html"):
df.groupby(...).value.mean().compute() ## Your dask computation(s)
|
Terminate a cluster (Learn more) |
cluster.close() # if shutdown_on_close=True
|
Packages and environments#
Create a software environment from a list of |
coiled.create_software_environment(
name="my-conda-env",
conda={
"channels": ["conda-forge", "defaults"],
"dependencies": ["dask", "xarray=0.15.1", "numba"],
},
)
|
Create a software environment from an |
coiled.create_software_environment(
name="my-conda-env",
conda="environment.yml",
)
|
Create a software environment from a list of |
coiled.create_software_environment(
name="my-pip-env",
pip=["dask[complete]", "xarray==0.15.1", "numba"],
)
|
Create a software environment from a |
coiled.create_software_environment(
name="my-pip-env",
pip="requirements.txt",
)
|
Create a software environment from an existing Docker image |
coiled.create_software_environment(
name="my-docker-env",
container="rapidsai/rapidsai-core:23.02-cuda11.5-runtime-ubuntu20.04-py3.8",
)
|